Garcés-Pastor, S., Wangensteen, O.S., Pérez-Haase, A. et al. DNA metabarcoding reveals modern and past eukaryotic communities in a high-mountain peat bog system. J. Paleolimnol. 62, 425–441 (2019) doi:10.1007/s10933-019-00097-x

Abstract

Peat bogs located in high mountains are suitable places to study local environmental responses to climate variability. These ecosystems host a large number of eukaryotes with diverse taxonomic and functional diversity. We carried out a metabarcoding study using universal 18S and COI markers to explore the composition of past and present eukaryotic communities of a Pyrenean peat bog ecosystem. We assessed the molecular biodiversity of four different moss micro-habitats along a flood gradient in the lentic Bassa Nera system (Central Pyrenees). Five samples collected from different sediment depths at the same study site were also analysed, to test the suitability of these universal markers for studying paleoecological communities recovered from ancient DNA and to compare the detected DNA sequences to those obtained from the modern community. We also compared the information provided by the sedimentary DNA to the reconstruction from environmental proxies such as pollen and macro-remains from the same record. We successfully amplified ancient DNA with both universal markers from all sediment samples, including the deepest one (~ 10,000 years old). Most of the metabarcoding reads obtained from sediment samples, however, were assigned to living edaphic organisms and only a small fraction of those reads was considered to be derived from paleoecological communities. Inferences from ancient sedimentary DNA were complementary to the reconstruction based on pollen and macro-remains, and the combined records reveal more detailed information. This molecular study yielded promising findings regarding the diversity of modern eukaryotic peat bog communities. Nevertheless, even though information about past communities could be retrieved from sediment samples, preferential amplification of DNA from living communities is a caveat for the use of universal metabarcoding markers in paleoecology.

Reference article

We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of this site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

  I accept cookies from this site.
EU Cookie Directive plugin by www.channeldigital.co.uk