2022

Geomorphic response of outburst floods: Insight from numerical simulations and observations––The 2018 Baige outburst flood in the upper Yangtze River

Yang, Z., Liu, W., Garcia-Castellanos, D., Ruan, H., Luo, J., Zhou, Y., & Sang, Y. (2022). Geomorphic response of outburst floods: Insight from numerical simulations and observations––The 2018 Baige outburst flood in the upper Yangtze River. Science of The Total Environment, 851, 158378. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.158378

Abstract

Outburst floods related to glacial or landslide damming are a major agent of geomorphic change in mountain rivers. Although the evidence between outburst flooding and riverine landscapes has been gradually recognized, the lack of hydraulics to the extent that there has still not been quantified on the relationship of how the amount and spatial distribution of these changes relate quantitatively to the hydraulic conditions and durations of these catastrophic events. This study combined remote and field observations of the 2018 Baige outburst flood with two-dimensional numerical simulation using the diffusive wave equation. By feeding the measured dam-breach hydrograph and comparing three different Manning coefficients in numerical experiments, the simulation results show that when n = 0.055, the time of peak flow was only 0.5 h different from that indicated by measured data in Yebatan, 54 km downstream of the Baige landslide dam. Under high shear stress over several hours at sustained ~20 m water depth, lateral erosion caused by these outburst floods contributed to the adjacent landslide, which was activated in association with intermittent water velocity waves of approximately 17 m/s. Sustained high stream power (>50 kW m2) from the outburst flood eroded slope toes and accelerated slippage of six slopes. Combining simulation and observations, we also developed a physical model related to hillslope instability caused by high hydrodynamic erosion of riverbanks generated by flow waves lasting several hours, which explained the hydrodynamic response of the outburst flood to the canyon geomorphology. Furthermore, we suggest that the pattern of channel widening erosion and deposition is governed by the variation in shear stress and Froude number as the high-energy flood flows from a wide channel into a narrow river valley. Our findings highlight that the hydraulics of high-magnitude outburst floods and sediment transport play crucial roles in reshaping canyon geomorphology.

Original article

Privacy policy

In accordance with the Organic Law 3/2018, dated 5 December, on Personal Data Protection and Guarantee of Digital Rights (LOPDGDD), the General Regulation of Data Protection (RGPD) and the related legislation, GEO3BCN-CSIC undertakes to comply with the obligation of secrecy with regard to personal data and the duty to treat them confidentially after carrying out the corresponding risk analyses, in particular, in accordance with the First Additional Provision of the LOPDGDD, the security measures corresponding to those provided for in the National Security Scheme, necessary to prevent its alteration, loss, processing or unauthorised access.

Users may exercise their rights of access, rectification, cancellation, opposition, limitation or portability at any time by writing to the Secretary General of the CSIC at C/Serrano 117, 28006 MADRID (Spain), providing a photocopy of their National Identity Document (DNI) or through the CSIC’s Electronic Register, located at its Electronic Headquarters, for which they must have a recognised electronic certificate. It is possible to contact with the CSIC’s Data Protection Delegate though this email: delegadoprotecciondatos@csic.es

GEO3BCN-CSIC reserves the right to modify this Privacy Policy in order to adapt it to the latest legislations, jurisprudences or interpretations made by the Spanish Data Protection Agency.  In this case, the CSIC will announce such changes, clearly indicating in advance the modifications made, and requesting, if considered necessary, their acceptance.

No
Accept

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR
Aviso de cookies
Scroll to Top