2024

Dynamic Recrystallization of Olivine During Simple Shear: Evolution of Microstructure and Crystallographic Preferred Orientation From Full-Field Numerical Simulations

Yu, Y., Griera, A., Gomez-Rivas, E., Bons, P. D., García-Castellanos, D., Hao, B., Lebensohn, R. A., & Llorens, M.-G. (2024). Dynamic Recrystallization of Olivine During Simple Shear: Evolution of Microstructure and Crystallographic Preferred Orientation From Full-Field Numerical Simulations. Geochemistry, Geophysics, Geosystems, 25(9), e2023GC011212. https://doi.org/10.1029/2023GC011212

Abstract

Upper mantle deformation is mainly controlled by the mechanical behavior of olivine. Crystallographic preferred orientations (CPOs) develop in olivine due to crystal-plastic deformation during mantle flow, where the a-axes of olivine polycrystalline aggregates are aligned with the flow direction. Therefore, the observed CPO in olivine-rich rocks is used as an indicator of the mantle flow direction. Experimental data show that olivine rheology is strongly controlled by the microstructure. While the influence of plastic deformation is in general well characterized, the role of dynamic recrystallization during deformation is not totally understood, limiting our ability to interpret the deformation history of naturally deformed rocks. This contribution presents microdynamic numerical simulations of olivine polycrystalline aggregates with different iron content (i.e., fayalite content) with the aim of exploring the CPO and grain size response to dynamic recrystallization. We use a full-field approach with an explicit simulation of viscoplastic deformation and dynamic recrystallization processes under simple shear boundary conditions up to high strain. The simulations show that the CPOs are similar and practically reach the same maximum regardless of the iron content. CPOs are characterized by a single cluster of a-axis and two-clusters of b-axis, reveling a joint activity of the easy glide [100](010) and the moderate strength [100](010) slip systems. High-strain domains of our models are consistent with experimental results, showing an A-type fabric with double maxima, and where the CPO is aligned with the shear direction. The model provides a deeper understanding of the dynamic recrystallization influence on olivine CPOs resulting from plastic deformation.

Full article

Privacy policy

In accordance with the Organic Law 3/2018, dated 5 December, on Personal Data Protection and Guarantee of Digital Rights (LOPDGDD), the General Regulation of Data Protection (RGPD) and the related legislation, GEO3BCN-CSIC undertakes to comply with the obligation of secrecy with regard to personal data and the duty to treat them confidentially after carrying out the corresponding risk analyses, in particular, in accordance with the First Additional Provision of the LOPDGDD, the security measures corresponding to those provided for in the National Security Scheme, necessary to prevent its alteration, loss, processing or unauthorised access.

Users may exercise their rights of access, rectification, cancellation, opposition, limitation or portability at any time by writing to the Secretary General of the CSIC at C/Serrano 117, 28006 MADRID (Spain), providing a photocopy of their National Identity Document (DNI) or through the CSIC’s Electronic Register, located at its Electronic Headquarters, for which they must have a recognised electronic certificate. It is possible to contact with the CSIC’s Data Protection Delegate though this email: delegadoprotecciondatos@csic.es

GEO3BCN-CSIC reserves the right to modify this Privacy Policy in order to adapt it to the latest legislations, jurisprudences or interpretations made by the Spanish Data Protection Agency.  In this case, the CSIC will announce such changes, clearly indicating in advance the modifications made, and requesting, if considered necessary, their acceptance.

No
Accept

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR
Aviso de cookies
Scroll to Top