2021

Joint interpretation of geophysical data: Applying machine learning to the modeling of an evaporitic sequence in Villar de Cañas (Spain)

Marzan I, Martí D, Lobo A, et al. Joint interpretation of geophysical data: Applying machine learning to the modeling of an evaporitic sequence in Villar de Cañas (Spain). Eng Geol. 2021;288:106126. doi:https://doi.org/10.1016/j.enggeo.2021.106126

Abstract

An optimal strategy for building realistic geological models must combine different geophysical techniques, each with its advantages and limitations. However, dealing with multiple geophysical datasets to derive a geological interpretation is not straightforward since geophysical parameters are not always functionally related. In this work, we propose an innovative approach consisting of using machine learning techniques to jointly interpret three geophysical datasets (a pseudo-3D resistivity model, a 3D velocity model, and 4 well-logs). These datasets, among others, were acquired to characterize the suitability of an evaporitic sequence for hosting a temporary storage facility of hazardous radioactive waste, which was planned in Villar de Cañas (Spain). Our strategy consisted of integrating both models in a single 3D bi-parametric grid that nested the velocity and resistivity values in each node. We then used a supervised learning algorithm to lithologically classify each node according to a training set based on the borehole data, which acts as ground truth. The training set is composed of classifiers that lithologically label resistivity-velocity pairs. However, the very shallow nodes lack classifiers due to the poor well-log coverage at the top part of the evaporitic sequence. To fill this gap, we computed an unsupervised cluster analysis that provided new classes to complete the training set. Finally, the supervised classification was applied, providing a new 3D lithology model that is far more consistent with the geology than the models derived from each parameter independently. The 3D model also revealed geological features previously unknown, notably the existence of an inactive fault. The proposed method can be applied to integrate and jointly interpret any kind of multidisciplinary datasets in a wide range of geoscientific problems, including natural resource exploration, geological storage, environmental monitoring, civil engineering practice, and hazard assessment.

Reference article

Política de privacitat

De conformitat amb la Llei Orgànica 3/2018, de 5 de desembre, de Protecció de Dades Personals i Garantia de Drets Digitals (LOPDGDD), el Reglament General de Protecció de Dades (RGPD) i la legislació relacionada, GEO3BCN-CSIC es compromet a complir amb l'obligació de secret respecte a les dades personals i el deure de tractar-les confidencialment després de realitzar les corresponents anàlisis de risc, en particular, de conformitat amb la disposició addicional primera de la LOPDGDD, les mesures de seguretat corresponents a les previstes en el Règim Nacional de Seguretat, necessàries per evitar la seva alteració, pèrdua, tractament o accés no autoritzat.

Els usuaris podran exercitar en qualsevol moment els seus drets d'accés, rectificació, cancel·lació, oposició, limitació o portabilitat dirigint-se per escrit a la Secretaria General del CSIC a C/Serrano 117, 28006 MADRID (Espanya), aportant fotocòpia del seu Document Nacional d'Identitat (DNI) o a través del Registre Electrònic del CSIC, situat a la seva Seu Electrònica, per al qual hauran de disposar d'un certificat electrònic reconegut. És possible contactar amb el Delegat de Protecció de Dades del CSIC a través d'aquest correu electrònic: delegadoprotecciondatos thecsic.es

GEO3BCN-CSIC es reserva el dret a modificar la present Política de Privacitat amb la finalitat d'adaptar-la a les últimes legislacions, jurisprudencials o interpretacions efectuades per l'Agència Espanyola de Protecció de Dades. En aquest cas, el CSIC anunciarà aquests canvis, indicant clarament amb antelació les modificacions efectuades, i sol·licitant, si es considera necessari, la seva acceptació.

No
Acceptar

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR
Aviso de cookies
Desplaça cap amunt