2022

Empirical H/V spectral ratios at the InSight landing site and implications for the martian subsurface structure

Carrasco, S., Knapmeyer-Endrun, B., Margerin, L., Schmelzbach, C., Onodera, K., Pan, L., Lognonné, P., Menina, S., Giardini, D., Stutzmann, E., Clinton, J., Stähler, S., Schimmel, M., Golombek, M., Hobiger, M., Hallo, M., Kedar, S., & Banerdt, W. B. (2023). Empirical H/V spectral ratios at the InSight landing site and implications for the martian subsurface structure. Geophysical Journal International, 232(2), 1293–1310. https://doi.org/10.1093/gji/ggac391

SUMMARY

The horizontal-to-vertical (H/V) spectral ratio inversion is a traditional technique for deriving the local subsurface structure on Earth. We calculated the H/V from the ambient vibrations at different wind levels at the InSight landing site, on Mars, and also computed the H/V from the S-wave coda of the martian seismic events (marsquakes). Different H/V curves were obtained for different wind periods and from the marsquakes. From the ambient vibrations, the recordings during low-wind periods are close to the instrument self-noise level. During high-wind periods, the seismic recordings are highly contaminated by the interaction of the lander with the wind and the martian ground. Therefore, these recordings are less favourable for traditional H/V analysis. Instead, the recordings of the S-wave coda of marsquakes were preferred to derive the characteristic H/V curve of this site between 0.4 and 10 Hz. The final H/V curve presents a characteristic trough at 2.4 Hz and a strong peak at 8 Hz. Using a full diffuse wavefield approach as the forward computation and the Neighbourhood Algorithm as the sampling technique, we invert for the 1-D shear wave velocity structure at the InSight landing site. Based on our inversion results, we propose a strong site effect at the InSight site to be due to the presence of a shallow high-velocity layer (SHVL) over low-velocity units. The SHVL is likely placed below a layer of coarse blocky ejecta and can be associated with Early Amazonian basaltic lava flows. The units below the SHVL have lower velocities, possibly related to a Late Hesperian or Early Amazonian epoch with a different magmatic regime and/or a greater impact rate and more extensive weathering. An extremely weak buried low velocity layer (bLVL) between these lava flows explains the data around the 2.4 Hz trough, whereas a more competent bLVL would not generate this latter feature. These subsurface models are in good agreement with results from hammering experiment and compliance measurements at the InSight landing site. Finally, this site effect is revealed only by seismic events data and explains the larger horizontal than vertical ground motion recorded for certain type of marsquakes.

Original article

Privacy policy

In accordance with the Organic Law 3/2018, dated 5 December, on Personal Data Protection and Guarantee of Digital Rights (LOPDGDD), the General Regulation of Data Protection (RGPD) and the related legislation, GEO3BCN-CSIC undertakes to comply with the obligation of secrecy with regard to personal data and the duty to treat them confidentially after carrying out the corresponding risk analyses, in particular, in accordance with the First Additional Provision of the LOPDGDD, the security measures corresponding to those provided for in the National Security Scheme, necessary to prevent its alteration, loss, processing or unauthorised access.

Users may exercise their rights of access, rectification, cancellation, opposition, limitation or portability at any time by writing to the Secretary General of the CSIC at C/Serrano 117, 28006 MADRID (Spain), providing a photocopy of their National Identity Document (DNI) or through the CSIC’s Electronic Register, located at its Electronic Headquarters, for which they must have a recognised electronic certificate. It is possible to contact with the CSIC’s Data Protection Delegate though this email: delegadoprotecciondatos@csic.es

GEO3BCN-CSIC reserves the right to modify this Privacy Policy in order to adapt it to the latest legislations, jurisprudences or interpretations made by the Spanish Data Protection Agency.  In this case, the CSIC will announce such changes, clearly indicating in advance the modifications made, and requesting, if considered necessary, their acceptance.

No
Accept

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.

ACEPTAR
Aviso de cookies
Scroll to Top