Buffoni, C., M. Schimmel, N. C. Sabbione, M. L. Rosa, and G. Connon (2019), Crustal structure beneath Tierra del Fuego, Argentina, inferred from seismic P-wave receiver functions and ambient noise autocorrelations, Tectonophysics, 751, 41-53, doi: https://doi.org/10.1016/j.tecto.2018.12.013.


We investigate the structure of the crust beneath the main island of Tierra del Fuego through a teleseismic receiver function analysis and ambient seismic noise autocorrelation using data of four available broad-band stations. The area is situated in a remote region of southern Argentina where the interaction between the South American and Scotia plates define the Magallanes-Fagnano Fault System. Crustal thickness, Vp/Vs ratios and S-wave velocity models were estimated using the H-k stacking method and the inversion of receiver functions with the Neighbourhood Algorithm. Furthermore, we applied an ambient seismic noise autocorrelation procedure to identify PmP Moho reflections at all stations. The three methods provide consistent estimates for the crustal thickness which ranges from about 24.5 km in the northern part of the Island to about 39.2 km in the south. The lowest and highest values of S-wave velocity found, in the most superficial layers of the crust, correlate with the presence of Tertiary and upper Cretacic sediments in the north and with older geological units composed by more consolidated lithologies in the south, respectively. Despite the diverse geological and tectonic settings present, our results do not change significantly for different parameters or subsidiary data sets, i.e., showing the robustness of our models which likely represent closely the local structure beneath the Island. This area is considered a very seismically active one and its crustal structure has been little explored demonstrating the importance of having new models and the necessity to increase the station coverage to allow a more detailed study of the region. Furthermore, the models presented here provide better constraints on the crustal structure, and will facilitate studies of the regional seismicity that can improve our understanding of the seismic hazard posed by earthquakes such as the magnitude 7.5 and 7.8 events that occurred in 1949.

Reference article

We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of this site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

  I accept cookies from this site.
EU Cookie Directive plugin by www.channeldigital.co.uk